
4 4~ ; ~ - -  , v f - u  -~e~0. 

Equation (5) for the second mode yields a sa t i s fac tory  quantitative approximation. The constants in Eq. (4) 
for Re = 3000 have the values 

a,  ~ 0J86; a2-~ 0.243; ~ ~ 4.5; e ~ --0.5t5; u .~  t.02. 
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CALCULATION OF THE INTERACTION OF A TURBULENT 

BOUNDARY LAYER WITH AN EXTERNAL SUPERSONIC 

FLOW ON THE C'ONCAVE CORNER AND ON THE 

S P H E R I C A L  I N T A K E  P A R T  O F  A B O D Y  

A.  N. A n t o n o v  UDC 532.526.4 : 533.6.011.5 

I N T R O D U C  T I C  N 

An integrated method of calculat ing turbulent flow on two-dimensional  and ax isymmetr ica l  bodies in 
separat ion and at tached boundary layer  zones a r i s ing  in the neighborhood of a concave corner  and on a spher-  
ical intake par t  of a body is proposed. The method allows us to calculate p res su re  distribution, displacement 
thickness,  and momentum thickness within the region in which the boundary layer  interacts  with an external 
ideal flow. The phenomenon of the interaction between a viscous and near ly  inviscous flow is widespread. It 
is observed when a concave corner  is s t reamlined,  as a p r e s su re  shock impinges on a boundary layer,  in the 
case  of flow in the neighborhood of the spherical  intake par t  of an ax isymmetr ica l  body, and in many other 
cases .  The distinctive features  of this phenomenon when two-dimensional  and ax isymmetr ica l  bodies are  
s t reaml ined has been theoret ical ly  investigated in [1-4]. Separated flows due to a p re s su re  shock or  an ob- 
stacle have been studied in [1-3], while [4] determined the base p res su re  behind the spherical  intake par t  of a 
body. Theoret ical  investigations for the case of "free" separated flows in which the separat ion point and the 
at tached boundary layer  were not fixed, for  example,  on a plate with long wedge attached to it, have been c a r -  
r ied  out within the context of boundary- layer  theory using integrated methods. In the cu r ren t  ar t ic le ,  an in- 
tegra ted  method of calculat ing flows in a base region [5] is used to calculate "free" separated flows in the 
neighborhood of a concave corner  and on a spherical  intake par t  of a body with a base support. The resul ts  of 
the calculat ions a re  compared  to experimental  data. 

w Let  us consider  the following approximate flow scheme in the separation zones of a boundary layer  
in f ront  of a wedge (flap) in the fo rm of a scheme for the ordinary  interaction of a turbulent boundary layer  
with an external  ideal flow (Fig. 1). The interaction region is within the separat ion zone 1-4 and the attached 
zone 5-8. 

In the separat ion zone, we distinguish gradient  flow 1-3 and cons tan t -p ressure  flow 3-4; S1S 2 is the con- 
stant  flow rate  line, where S 1 and S 2 are  cr i t ical  points. The calculation of the interaction of viscous layers  
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with an external  ideal supersonic  flow will be ca r r i ed  out within the f ramework of boundary- layer  equa- 
tions. According to [5], the following sys tem of equations may be writ ten for the interaction region: 

dS*/dx=Fo(M, 6", 0"*); 
dO**/dx=Ft(M, 6", 0"*); 
dM/dx=F3(M, 5*, 0"*), 

(1.!) 

where 

0 " *  8 0 * *  F o ~ tg ~ ~- D, F i r2~ -- F, ~ (H + 2) dr = r az' (1.2) 

A'MAC Pl dot F3 dF3 F~ = -- To-'~-~;' F a = M  . . . .  Pot a t  ' d M  ' 

: •  / A. (  ,Io- 
D =  F 3 \ h *  t _  F . F ' ~ , ~ =  "-TT\-i-[ol/ , O** =6"*  

: It 10.5 • \'-~od ~o:  T~ = 0"5I~/I~ + 0"22Prt/3 + (0.5 --  0.22Pr V3) I1/Ioi , 

h* ~ HI~ + l/2 (• -- t) M 2 
H/H* T i/2 (z -- l) M z (H 4= i) 

We note that Eqs. (1.1) were obtained usingthe Co le s -Krokko  t ransformat ion,  by means of which a 
compress ib le  turbulent layer  is t r ans fo rmed  into an incompressible  boundary layer .  We obtain a relat ion 
between the pa rame te r s  h 2 and h of a compress ib le  boundary layer and the pa ramete r s  A z and H of an in- 
compress ib le  layer  using previous [5] equations, 

rot ) 
h = H -~t -}- \ i ~ --I ; (1.3) 

~3 A* h I1 (1.4) 
A 2 T o H I0t 

Equations between the pa ramete r s  of an incompressible  turbulent layer  H, H*, F and A occur r ing  in 
the sys tem of equations (1.1) for the zone of an at tached boundary layer  1-2 (cf. Fig. 1) are  assumed to be 
known and a re  selected in the form of dependences H=H(A), F =F(H), and H* =H*(H), as presented in [5]. 
The equations between these pa rame te r s  will be defined in the zone of c i rcu la tory  flow 2-3. F o r  this pur -  
pose we will jointly solve the f i rs t  two equations of the system (1.1) and calculate the pa ramete r s  6* and 5"* 
in the separat ion zone of a two-dimensional  boundary layer  (the p re s su re  distribution in the interaction 

region and the var iables  6~, 6~*, (d6*/dx) t =tan ill, and M 1 in the initial section 1 are  taken from exper i -  
mental studies [6, 7]). The pa rame te r  F vanishes in the zone of c i rcu la tory  flow [5]. In o rde r  to take into 
account undermixing (D ~ 0) we will use the method of success ive  approximations,  which consists  in f i rs t  
setting D =0 and calculating f rom the f i rs t  equation of Eqs. (1.1) the distribution of the pa ramete r  6*(x) 
and f rom the second equation, that of 0 * *(x), the pa ramete r  fl being found from the P r a n d t l - M e y e r  equa- 
tion. Equations between the pa rame te r s  H, h, 6* * = 6 * / h ,  and 0* * are  used in the course  of the calculations. 

We find the distribution of H(x) and A(x) as we c a r r y  out calculations,  taking into account Eqs. (1.3) 
and (1.4). We fur ther  compute the distribution of the pa rame te r  charac te r iz ing  undermixing D(x). For  
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this purpose ,  we use  the p a r a m e t e r s  F3, F'3, and h*, applying Eq. (1.2) and the dependence H* = H* (H) used  
in [5] in o r d e r  to ca lcula te  h*. Once we obtain D(x), we repea t  the integrat ion of the f i r s t  two equations of 
Eq. (1.1) until the va lues  ~*/6~ and 6 * */61" * of the las t  approximat ion  no longer  di f fer  f r o m  the preceding  
va lues  by 10 -5 . 

The dependences  H = H(A) thus ca lcula ted  in the separa t ion  zone of a boundary layer  when M 1 is be-  
tween 1.56 and 3.0 and Re61 is between 3- 104 and 11 - 104 a re  depicted in Fig.  2. Here  1 r e p r e s e n t s  MI= 
2.92; 2, Ml=3.00;  3, M1=2.49; 4, M1=1.56; 5, M1=2.32; 6, M1=1.79; and 7, M1=2.4. The resu l t ing  data 
a r e  approx ima ted  by a theore t ica l  dependence H = H(A) calcula ted  for  an equi l ibr ium incompress ib le  t u r -  
bulent boundary l aye r  [5, 8] in the region of the a t tached boundary layer .  The r e su l t s  can be approximated  
by a l inear  function having the value H = H 3 = 10 when A = 0 in the zone of c i r cu l a to ry  flow. 

w We may  calcula te  the p r e s s u r e  dis t r ibut ion in the separa t ion  region by integrat ing the sy s t em of 
equations (1.1) a f t e r w e  obta inthe  dependence H = H(A) throughout the en t i re  interact ion region. The equa-  
tions r =F(H),  A* =A*(M*), H* =H*(H), and M* =0.5(Mi+M 2) given in [5], as  well as the dependence H = 
H(A) we have found (of. Fig. 2), a r e  used in the calculat ions.  The p a r a m e t e r  fl is ca lcula ted  for  two-di -  
mens iona l  flow f rom the P r a n d t l - M e y e r  equation and by the method of c h a r a c t e r i s t i c s  for  a x i s y m m e t r i c a l  
flow. Since the s y s t e m  of equations (1.1) is a s y s t e m  of ord inary  different ia l  equations,  i t  is sufficient  to 
indicate the se t  of p a r a m e t e r s  MI, ~ ,  6~ *, and ~71 in the initial in terac t ion  sect ion 1. If the position of 
sect ion 1 is known (for example ,  f rom exper iment ) ,  we m a y  calculate  the c r i t i ca l  p r e s s u r e  ra t io  P~=PJPl 
at  which the turbulent  boundary l ayer  s e p a r a t e s .  F o r  this purpose ,  we will c a r r y  out the calculation f rom 
sect ion 1 (the p a r a m e t e r  H ~  1.3) to sect ion 3. The calculation is a s s u m e d  valid when H r eaches  the value 
H=H3 = 10.0, which is the finite boundary condition in sect ion 3. 

On the o ther  hand, whenever  the posit ion of the interact ion s t a r t ing  sect ion is unknown, it  is nece s -  
s a r y  to impose  addit ional conditions on the s y s t e m  of equations (1.1), i .e . ,  to specify  t e rmina l  boundary 
conditions.  It is  convenient  to se l ec t  full conditions on a two-dimens ional  plate  (specifying A 8 = 0 and/78 = 0) 
as  the addit ional conditions in the a t tached region,  when calcula t ing flow in the neighborhood of a flap in-  
ducing separa t ion  of the boundary l aye r  (cf. Fig.  1). Calculat ions of two-dimensional  flow in the neighbor-  
hood of a concave c o r n e r  (flap) will f i r s t  be c a r r i e d  out in the separa t ion  zone and then in the at tached 
zone. The values  of the bounda ry - l aye r  p a r a m e t e r s  in sect ion 1 will be calcula ted in accordance  with the 
posit ion we have supposed.  The posit ion of the in teract ion s ta r t ing  sect ion is ref ined in the course  of the 
solution. The calculat ion is c a r r i e d  out f r o m  sect ion 1 to sect ion 3, resu l t ing  in 8~, 6~ *, M 3 and t73 in the 
separa t ion  zone. We calcula te  the length of the c o n s t a n t - p r e s s u r e  flow zone 3-6. The calculation is c a r -  
r i ed  out using a prev ious  [9] method under  the assumpt ion  that flow into the at tached zone is equivalent  to 
flow in the base region behind a s tep  of depth b = (x4-x  3) sin ~* (cf. Fig. 1); the c o n s t a n t - p r e s s u r e  flow 
p a r a m e t e r s  of the base  reg ion  M, t7, and 8" * a r e  as  follows, taking into account  the wedge angle ~*:  M = 

- * 6 *  * - 6 ~  * MG =hiI3, fl=fl6-f13 - ~  , and = 6 ~ * -  . The d i sp lacement  th ickness  has the fo rm 

We then cons ide r  the a t tached bounda ry - l aye r  region 6-8, which is calculated using a previous  [5] 
method.  The flow conditions on the wedge sur face  a re  se lec ted  in the s a m e  way as  for  a two-dimensional  
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plate, i .e. ,  f18 = 0 and A s = 0, at  the end of the interact ion region. The b o u n d a r y  conditions at  the end of the 
interact ion zone for a given wedge generatr ix  angle a* a re  satisfied by selecting the position of the s tar t ing 
section 1 by the range method. Our calculations demonst ra ted  that the length (x6-x 5) of the cons tan t -p res -  
sure  zone 5-6 cannot be computed, and mus t  be set  equal to zero  when calculating the attached zone for 
small  separat ion regions  in which no cons tan t -p res su re  zone 3-4 occurs  (in this case,  it has been shown 
by Bonderav [3], who p roces sed  his experimental  data in separat ion zones in front of a flap, that a*-< 2B3). 

Calculated p re s su re  distributions p0= P/P1 in the interaction zone for Ml= 2.0, 2.7, and 3.0 a re  com-  
pared in Fig. 3 to previous [10] experimental  data. Curves 1-3 correspond to Ml= 2.0, a* = 20~ M = 2.7, 
a* = 25~ and M = 3.0, ~* = 25~ L = 140 ram. We should bear  in mind that experimental  dam in the attached 
boundary- layer  region on the flap a re  available for the entire interaction zone only for the ease M I =2.7. 
T h e r e f o r e ,  the ealculation can be compared  to exper iment  when M 1 = 2.0 and 3.0 only for  the separat ion 
zone. 

w Let us consider  flow ar i s ing  near  the surface  of a spherical  body s t reamlined by supersonic  
flow (Fig. 4). A depar ted shock wave 1 is observed  in front of the body. The pa rame te r s  of the undisturbed 
gas in front of the shock wave are  Moo, p~o, and poe. Gas velocity is equal to ze ro  at the leading cri t ical  
point on the surface of the body while p r e s s u r e  and density pT 0 and p t 0 are ,  correspondingly,  calculated f rom 
the p a r a m e t e r s  of stagnant flow behind the plane shock wave. The x-coordinate  is counted off along the 
generat r ix  of the surface  of the body and is determined by the cenWal angle a = x / R ,  where R is the radius 
of the sphere.  

The appearance of a shock wave 2 at the separat ion point of a boundary layer f rom the surface of the 
body is the distinctive feature in the formation of the bottom wake of a spherical  body [4]. The flow a s -  
sumed the direct ion of the drag axis passing through the shock wave 3 in the attached botmdary- layer  r e -  
gion. The total flow on the body may be divided into three zones. The f irs t  zone is f rom the leading cr i t -  
ical point to section 1, the second is the separat ion zone 1-4, and the third is the attached boundary- layer  
zone 5-8. Well-known experimental  and theoret ical  studies [11] of sphere s t reamline  in an attached flow 
region (in the f i rs t  zone) give us grounds for asser t ing  that the dimensionless  p res su re  P/P'0 monotonically 
dec reases  as a increases  in the range of angles from 0 to %. Experiments  ca r r i ed  out in a separat ion 
zone on a spherical  intake part  of a body demonst ra te  that p re s su re  increases  with increas ing  a in the 
separat ion zone 1-3, reaching some constant value in the zone 3-4 (base p re s su re  value). 

We will use the sys tem of equations (1.1) to calculate flow in a separat ion zone. The calculation will 
be ca r r i ed  out f rom section i (el. Fig. 4) downstream the main flow, to section 3. Here we will use the 
equations given in Sec. 1 between the pa rame te r s  H, I-r*, A, F,  A*, and M*. Resul ts  of a numerical  solu- 
tion obtained [11] for ideal gas flows were used to calculate the flow pa rame te r s  in section 1~ It should be 
noted that the boundary- layer  equations (1.1) were writ ten in an orthogonal x, y-coordina te  system, the x-  
coordinate being counted off along the body generatr ix .  Equations for an external  ideal supersonic  flow 
derived by the method of eharac te r i s t i e s  can be conveniently written in an orthogonal XY-coordinate  sys -  
tem, where the X axis is directed along the axis of symmet ry  of ax isymmetr ica l  flow. It is therefore  also 
n e c e s s a r y  to take into account in the calculation equations relating both coordinate planes. Here 

where fl* is the angle between the direct ion of the veloci ty vec to r  on the boundary of the boundary layer  
and the X axis and fl, is the angle between the x and X axes. 
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Flow on the intake pa r t  of a sphe re  with a cyl indr ica l  base suppor t  r e s e m b l e s  flow in the ne ighbor-  
hood of an ' a x i s y m m e t r i c a l  f lap."  The calculat ion of the in terac t ion  of a turbulent  boundary l ayer  with an 
ex te rna l  ideal supe r son ic  flow is analogous in this case  to the calculat ion suggested in See. 2. 

Le t  us calculate  flow in the neighborhood of a spher ica l  intake pa r t  of a body with base  bracket .  We 
f i r s t  ca lcula te  the flow in the separa t ion  zone 1-3. Af te r  the p a r a m e t e r s  in sect ion 3 have been de termined,  
we then calcula te  the length of the c o n s t a n t - p r e s s u r e  flow zone 3-6.  It  is  calculated using a previous  [9] 
method under  the assumpt ion  that  flow in the base  region with s tep of depth b =R cos a 3 - r 2  occurs  in this 
zone (eL Fig.  4), the c o n s t a n t - p r e s s u r e  flow p a r a m e t e r s  in the base  region (M and 5* *) having the fo rm 

M = M~ ---- M3; 6 " *  ~-~ 6 6 = (6 3 R c o s  a3)  / r~, 

and the d i sp lacemen t  th ickness  given by 
~6 

8; =(6; +b)+  tg 

The a t tached b o u n d a r y - l a y e r  r eg ion  6-8 is ca lcula ted  us ing  a previous  [5] method.  Calculation of 
the ex te rna l  ideal flow (to obtain the p a r a m e t e r  fl*) is c a r r i e d  out by the method of cha rac t e r i s t i c s .  

Le t  us wr i te  equations for  the c h a r a c t e r i s t i c s  of the f i r s t  and second fami l ies  in a physical  XY plane 
and in the mot ion hodograph plane [13], 

dY F.A • B .  
.dX ~tB ~ A ' 

We will have on the s t r e a m l i n e s ,  

dY A dw2 
d-Y =-v;  i 

Edl +_ Ddz • LdX -~ O. (3.1) 

dz ( 3 . 2 )  - - + F d z = O ;  dt=-~- ,  

where  

A = l (l - -  l~); t ( 1 - - 1 2 )  ~ l"; 4 ~ . B =--~- - -  E - - ~ ;  D =  ~-[~t2+l), 

L =  A 
(~tB 7+ A) Y"  

The F.  E. ]~lers v a r i a b l e s  ~t-----~f~----l, /=tg(~*/4), z= ln(p/pl), t=ln(p/91), and w,  =w~/pl/pl  were  taken 
as  the unknown functions. 

We calculate  the flow on an in ternal  s t r e a m l i n e  a t o m '  (of. Fig. 4) using the c h a r a c t e r i s t i c s  of the 
second fami ly  (3.1) and the s t r e a m l i n e  equation (3.2). We obtain as the final d i f fe rences  

Ym-- Ya=(Xm --Xa)(A/B)~, (Ym--Yc)=(Xm--X~)[( vA--B)/(vB+A)]c. 

In the mot ion hodograph plane we have for  the c h a r a c t e r i s t i c s  of the second family  

D c Lc 

Equations (1.1) were  used  to calculate  the z m values .  We compute  the c h a r a c t e r i s t i c  c 'd  m ' ,  the 
s t r e a m l i n e  e l eme n t  m m ' ,  and so on a f t e r  we have obtained the cha rac t e r i s t i c  cm. Thus, we find the so -  
lution for  ex te rna l  ideal superson ic  flow. 

, �9 [ 
A calcula t ion us ing  the F.  E. E l e r s  v a r i a b l e s  s i g n i f i ~  shor tens  computat ion t ime  in compar i son  

with the o rd ina ry  ca lcula t ionusing the var iables /z  = arctaaq'M2-~- 1 and B*. The conditions fib = 0 and A 8 = 0 in 
sec t ion  8 a r e  used  for  the s y s t e m  of equations (1.1) as  the t e rmina l  boundary conditions. Our method was 
used for  a base  suppor t  of rad ius  rz>> 61. F igure  5 depicts  the dependence of base p r e s s u r e  p~ o be-  
hind spher i ca l  bodies on the num ber  Moo ca lcula ted  as  Moo v a r i e d  f rom 1.7 to 5.0 and when r 2 / R = 0 . 2 5 .  
The function p~ has  a m i n i m u m  at  M~o ~ 2.5. Curve 1 co r re sponds  to 5~ * / R = 0 . 0 0 5 ,  while curve 2, 
to 5~ * / R  = 0.003, and curve  3, to r e su l t s  of a calculat ion (5~ * / R  = 0) c a r r i e d  out using a prev ious  [4] 

method.  

~4. An expe r imen ta l  s tudy of the in te rac t ion  of a turbulent  boundary l ayer  with an external  supe r -  
sonic flow was c a r r i e d  out for  the spher ica l  intake pa r t  of a cyl indr ica l  body. We used an annular  con-  
toured  nozzle  with cen te r  body (the model  i t se l f  was used  as  the center  body) designed for  M~ = 1.9. The 
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model  d i a m e t e r  d = 2R = 20 rnm; s ta t ic  p r e s s u r e  was se lec ted  by means  of tubes with internal  d i a m e t e r  

d 1 = 0.5 ram.  

F igure  6 depicts  the flow scheme  in the base region of a cyl indr ical  body with spher ica l  intake par t .  
A p r e s s u r e  shock I appea r s  in the region of separa t ion  of the boundary l aye r ,  and flow a s s u m e d  the d i r e c -  
tion of the d rag  axis  pass ing  through the p r e s s u r e  shock 1~ in the a t tached flow region.  Sections denoted 
by the digits  0-3 co r re spond  to flow spread ing  onto the spher ica l  intake pa r t  of the body (0), s t a r t  of i n t e r -  
act ion in the separa t ion  zone (1), s e p a r a t i o n  of boundary l aye r  (2), and p r e s s u r e  level ing (3). Both a g r a -  
dient (1-3) and a g rad ien t less  flow zone (3-4) can be dis t inguished in the separa t ion  zone 1-4. 

The Reynolds number ,  calculated using the p a r a m e t e r s  of the incoming flow to the edge of the bound- 
a r y  l ayer  and the length of the center  body f rom the nozzle " je t ,"  v a r i e d  in the range f rom 4.1.106 to 9.6.  
10 ~. In Fig. 6, 1 c o r r e s p o n d s  to R e = 4 . 1  �9 106, 2, to Re 6.8 �9 106, and 3, to Re=9 .6 .106 .  M e a s u r e m e n t s  of 
the total  p r e s s u r e  prof i les  c a r r i e d  out using a total  p r e s s u r e  pipe (micro-P i to t )  in the sect ion d i rec t ly  in 
f ront  of the spher ica l  pa r t  of the body when Re = 6.4 - 106 demons t ra t ed  that  n was approx ima te ly  between 
1 / 7  and 1 / 8  and that  the m o m e n t u m  thickness  8~ * / d :  0.0035 a f te r  sca l ing  to the ve loc i ty  profi le  u / u  1 = 
(y/~)n. 

Resu l t s  of m e a s u r e m e n t s  of the p r e s s u r e  dis tr ibut ion p0 =P/poo obtained on the spher ica l  intake par t  
of a body a r e  p re sen ted  in Fig. 6. 

A calculat ion was c a r r i e d  out using the theory  developed above by a s suming  that the base  p r e s s u r e  
behind the spher i ca l  intake pa r t  with base  suppor t  r 2 / R  = 0.25 was p rac t i ca l ly  equal to the base p r e s s u r e  
without the suppor t  (which was exper imen ta l ly  p roved  to within 3-10% for  cyl indrical  bodies and cones 
with a two-d imens iona l  end intake par t) .  Resu l t s  of the calculation a r e  depicted in Fig. 6 (curve 4). 

In conclusion,  the author  wishes  to e x p r e s s  his apprec ia t ion  to M. Ya. Yudelovich and E. N. Bondarev 
for  useful r e m a r k s  and d iscuss ion  of the study. 

NOTATION 

x, y, longitudinal and transverse coordinates; 6, ~*, 8* *, boundary-layer thickness, displacement 
th ickness ,  and m o m e n t u m  thickness;  0, 0",  0* *, l a y e r  thickness ,  d i sp lacement  th ickness ,  and m o m e n t u m  
thickness  of an i ncompres s ib l e  boundary layer;  u, p, longitudinal ve loci ty  and densi ty  of a c o m p r e s s i b l e  
boundary layer ;  U, p ' ,  longitudinal ve loc i ty  and densi ty  of an i ncompres s ib l e  boundary layer ;  A, p r e s s u r e  
gradient  p a r a m e t e r  of an i ncompres s ib l e  boundary layer ;  w,  velocity;  M, p, Mach number  and p r e s s u r e ;  
a ,  speed of sound; r ,  radius;  I, enthalpy; a* ,  angle of inclination of the flap; % fr ict ional  s t r e s s ;  u, P r a n d t l -  
Meyer  angle; P r ,  Prandt l  number;  r l ,  radius  of the base par t  of the a x i s y m m e t r i c a l  pa r t  of the body; r2, 
rad ius  of the base  support ;  b, depth of step;  e=0  for  two-dimensional  flow; fl, angle between the d i rec t ion 
of ve loc i ty  of the ex te rna l  edge of the boundary layer  and the sur face  of the body; e = 1 for  a x i s y m m e t r i c a l  
flow. Indices:  0, s tagnant  flow; 1, on the external  edge of the boundary l aye r  or  at  the s t a r t  of the zone 
within which the boundary l a y e r  in te rac ts  with an external  ideal flow; w, p a r a m e t e r s  on the wall; ~, for  
i ncompres s ib l e  flow. 

8. 6, h** : 8 " *  0* H* ~ H** 0"* h = ~ - . ; h * = T ;  ~ ; H : = ~ ;  : ~ ;  -- 0 ;  

v = ~0.~ arc tg [(M e --  i)/~] ~ -_ arctg (M 2 --  i)~ 

i. 

2~ 

3. 

4. 
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I N T E R A C T I O N  OF AN E X T E R N A L  

W I T H  T U R B U L E N T  F L O W  

iYl. A. G o l ' d s h t i k  a n d  M. Kh .  

D I S T U R B A N C E  

P r a v d i n a  UDC 532.517.4 

Previous calculations [1] and a critical analysis of the interpretation of some experimental 
data [2, 3] are  verif ied and refined. A model is proposed that directly takes into account in the 
motion equations terms describing the interaction of the disturbance with turbulent oscillations. 
The advantages of such an approach in comparison with the use of turbulent viscosity models 
are  demonstrated. 

Interest  in the stability of turbulent flows has recently grown in connection with attempts to predict the 
averaged character is t ics  of turbulent flow based on stability properties [4-7]. The stability problem as of 
now has been solved only in a quasflaminar approximation, in which the interaction of the disturbance with 
fluctuations is not taken into account [5]. This is due to the absence of experimental data that would permit 
any given model describing such interaction to be accepted. A ser ies  of works by Reynolds and Hussain [1-3], 
in which original experiments and the f i rs t  calculations using models taking into account the interaction of a 
weak nonrandom signal from the turbulence for channel flow were performed, appeared in 1970-1972. 

A periodic perturbation (vibrating streaks near walls} was introduced in a given section of the channel 
and its downstream propagation was studied. A weak, nonrandom signal consisting of about 4% of the turbulent 
velocity fluctuations was isolated. Experiments were car r ied  out for four frequencies with a Reynolds num- 
ber (Re = 13,800) calculated according to the channel half-width and maximal velocity [2]. 

A spatial stability problem for turbulent flow to a linear approximation arose as a resul t  of this experi-  
ment. The exponential nature of signal attenuation was indicated by the validity of the linear approximation 
[2-3]. 

The disturbance equations have the form 

"\ i / J _  O<p> , t 02<vi> 0 ( v i v j  -~- vi  v i / ,  
e~ .i 0x1 c~x~ -; Re OxiOx j Oxj c~xj 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 61-66, 
January-February,  1976. Original ar t icle  submitted December 23, 1974. 
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